Short Reports 1681

REFERENCES

- Geissman, T. A., Harborne, J. B. and Seikel, M. K. (1956)
 J. Am. Chem. Soc. 78, 825.
- Bohm, B. A. (1975) in *The Flavonoids* (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.) pp. 442-504. Academic Press, New York.
- 3. Smith, E. B. (1975) Bot. Gaz. 136, 78.

- Julian, E. A. and Crawford, D. J. (1972) Phytochemistry 11, 1841.
- 5. Crawford, D. J. (1976) Brittonia 28, 329.
- Shimokoryama, M. and Hattori, S. (1953) J. Am. Chem. Soc. 75, 1900.
- Giessman, T. A. and Heaton, D. C. (1943) J. Am. Chem. Soc. 65, 677.
- 8. Harborne, J. B. (1977) Phytochemistry 16, 927.

Phytochemistry, 1978, Vol. 17, pp 1681-1682 @ Pergamon Press Ltd Printed in England

0031/9422/78/0901-1681 \$02 00/0

FLAVONOIDS OF ALBIZIA ADIANTHIFOLIA

H. ARTHUR CANDY*, K. BRIDGET BROOKES*, JAMES R. BULL+, ERROL J. MCGARRY and JOAN M. MCGARRY

*Department of Chemistry, University of Natal, Durban 4001, Republic of South Africa; †National Chemical Research Laboratories, C.S.I.R., Box 395, Pretoria 0001, Republic of South Africa; †Imperial Chemical Industries Ltd, Pharmaceuticals Division, Mereside, Alderley Park, Macclesfield, Cheshire SK 10 4TG, UK.

(Received 30 January 1978; received for publication 17 March 1978)

Key Word Index—Albizia adianthifolia; Leguminosae; 3,4,2',3',4'-pentahydroxychalcone; 3,7,8,3',4'-tetrahydroxyflavanone; 3,7,8,3',4'-tetrahydroxyflavanone.

INTRODUCTION

Eleven trees of the Albizia genus (Leguminosae) are indigenous to South Africa [1]. Of these A. adianthifolia (Schumach) W. F. Wight, with its umbrella-like crown, is characteristic of the Natal coastal bush. The goldenyellow wood is of little industrial importance, while the toxic bark is used by some of the African population in a 'love potion'. It was observed during milling that the wood dust caused considerable respiratory discomfort, a property shared with A. suluensis and A. tanganicensis [2].

A sample of the wood of A. adianthifolia was examined and three flavonoids, 3,4,2',3',4'-pentahydroxychalcone (okanin), 3,7,8,3',4'-tetrahydroxyflavone (melanoxetin) and a dihydroflavonol (1), were isolated, the last being in greatest abundance. The properties of 1 were similar in several respects to those of 3.7.8.3'.4'-tetrahydroxyflavanone, originally isolated from Acacia excelsa and characterized by Clark-Lewis et al. [3, 4]. The reported occurrence of the dihydroflavonol 1 in the heartwood of Albizia odoratissima [5] was disputed [4] since its identification was based not upon the isolation of the compound but upon the formation of the pentamethyl ether on methylation of a brown gum. Such methylation of a dihydroflavonol to a 3-methoxyflavanone is without precedent. Under normal methylating conditions dihydroflavonols undergo dehydrogenation and subsequent methylation to give 3-methoxyflavones [6]. This communication reports the results of investigations to establish the identity of 1 and the fact that in our hands one of the products obtained on methylation of the dihydroflavonol 1 was indeed the 3-methoxyflavanone.

RESULTS

From colour tests (violet with either MgHCl or Zn-HCl [7, 8] and a +ve Pacheco reaction [7]) and from the appearance and behaviour of the UV spectrum

in various media [9], it was inferred that 1 was a 5-deoxydihydroflavonol. In support of this, the PMR spectrum exhibited 1H signals as doublets at $\delta(\text{DMSO-}d_6)$ 4.39 and 4.98, J=11 Hz each, assigned to C-3 and C-2 respectively, and at 6.56 and 7.18, J=9.0 Hz each, assigned to C-6 and C-5 respectively. A mass ion of m/e 304 (M⁺ 16%) was consistent with $C_{15}H_{12}O_7$. The PMR spectrum of the acetate revealed the presence of $5 \times -\text{OCOMe}$ thus defining the degree of hydroxylation in the parent compound. In the same spectrum, 1H signals at $\delta(\text{CDCl}_3)$ 5.40 and 5.70, each a doublet with J=12 Hz, confirmed the reduced state of the C-2, C-3 bond.

Methylation of 1 (DMS-Me₂CO-K₂CO₃) under N₂ on a steam bath for 6 hr, provided a mixture of 5 compounds. Of these, 3 were predominant, each displaying a different colour when sprayed with p-anisaldehyde-H₂SO₄ on TLC. Two of these components were isolated by PLC. The most abundant was identified as 3,7,8,3',4'-tetramethoxyflavanone on the basis of its spectral data (UV, PMR, MS), which agreed closely with published data [10, 11], notwithstanding the marked difference in mp with that published [10, 12] (our value 174°:lit. 166°).

The second methylation product was recovered as colourless needles, mp 149°. Apart from small differences the PMR spectrum was consistent with that reported for 3,7,8,3',4'-pentamethoxyflavanone [10] obtained as needles mp 138.5° [11]. The UV spectrum (MeOH) displayed inflections at 232, 259 nm and a maximum at 286 nm, while the MS gave a mass ion at m/e 374 (M + 18%) with a base peak at m/e 194.

The third methylation product exhibited TLC properties (R_f and colour) identical with those of the pentamethoxyflavone derived from 3,7,8,3',4'-tetrahydroxyflavone.

From the above evidence, it is concluded that the dihydroflavonol, 1, is identical with 3,7,8,3',4'-tetra-hydroxyflavanone. The formation of the pentamethoxy derivative during methylation, was unexpected [4].

1682 Short Reports

EXPERIMENTAL

Mps (uncorrected) were determined on a Kofler microscope hotstage. PMR spectra were recorded at 60 MHz with TMS as internal standard, unless otherwise stated. Acetylation was carried out by adding 2 drops of a soln of $HClO_4$ - Ac_2O (2 drops, 70%: 0.5 ml) to a suspension of the substrate in 1.0 ml Ac_2O , shaking for a few min and then pouring onto ice. Methylation was achieved by heating the substrate with DMS in Me_2CO over K_2CO_3 on a steam bath for 6 hr. TLC was performed on Si gel plates and zones were located by spraying with p-anisaldehyde- H_2SO_4 -EtOH (1:1:18). Paper chromatograms were sprayed with $K_3Fe(CN)_6$ (1% aq.)- $FeCl_3$ (1% aq.) 1:1

Isolation of 3,4,2',3',4'-pentahydroxychalcone and 3,7,8,3',4'-tetrahydroxyflavone. Finely milled wood (2.5 kg) was defatted with petrol (bp 60-80°) and then extracted with hot EtOAc (35 hr). Removal of the solvent furnished a brown gum (126 g) which was triturated with Et₂O. The insoluble residue dried to a tan coloured powder (X), while evaporation of the ethereal solution gave a brown gum (Y). Most of Y dissolved in warm water. This solution, after standing at 10° for 12 hr, deposited a yellow solid (1 g) which crystallized from H₂O-MeOH in yellow needles, mp 239-242', similar in all respects (mp, mmp, PC and UV) to a sample of 3,4,2',3',4'-pentahydroxychalcone, synthesized according to Kurth [13].

The residue remaining after exhaustive EtOAc extraction of the powder X, was mainly one compound which was purified by repeated recrystallization from EtOH giving yellow crystals of 3,7,8,3',4'-tetrahydroxyslavone, mp ca 300° (dec) (lit. [14], 312-320° (dec), R, 0.36 (PC, n-BuOH-HOAc-H₂O, 4:1:5); UV absorption agreed with lit. [15]; MS: m/e 302 (M⁺ 100%), 301(21), 286(16), 153(14), 137(11), 122(12). The pentaacetate crystallized from EtOH in colourless needles, mp 181-3 (lit. [3], 176°), R_f 0.59 (C_6H_6 -EtOH, 95:5); MS: m/e ($M^+ + 1$). 512 (M⁺) both low intensity, 470 (69%), 428(55), 386(83), 302(100); $\lambda_{\text{max}}^{\text{MeOH}}$ 250, 301 nm; PMR(CDCl₃): δ 2.32 (15H, m, $5 \times -OCOMe$; (80 MHz, CDCl₃): 7.29 (1H, d, $J_{6,5} = 8.9$ Hz, C-6), 7.35 (1H, d, $J_{5',6'} = 9.0$ Hz, C-5'), 7.68 (1H, dd, $J_{6',5'} = 9.0$ Hz and $J_{6',2'} = 2.1$ Hz, C-6'), 7.70 (1H, d, $J_{2',6'} = 2.1$ Hz, C-2'), 8.15 (1H, d, $J_{5,6} = 8.9$ Hz, C-5). The pentamethoxy derivative, colourless crystals (MeOH), mp 153-154°, agreed in mp and UV absorption with published data [4]. R, 0.29 (C₆H₁₂-EtOAc, 1:1), yellow with spray reagent, MS: m/e 372 $(M^+, 100\%)$, 371(75) 358(12), 357(49), 341(16), 329(19), PMR (CDCl₃): δ 3.90 (3H, s, -OMe), 3.98 (6H, s, 2× -OMe), 4.00 (3H, s, -OMe), 4.03 (3H, s, -OMe), 7.02 (2H, 2d, $J_{6,5}$ and

 $J_{5',6'}$ each 9.0 Hz, C-6, C-5'). Isolation of 3,7,8,3',4'-tetrahydroxyflavanone. A further sample of defatted wood was extracted with hot Me₂CO and provided a brown semi-solid mass. The water soluble components of this material were separated on a cellulose column (HOAc-H₂O, 1:50) furnishing 3,7,8,3',4'-tetrahydroxyflavanone which crystalized from HOAc-H₂O, 1:4. as a colourless microcrystalline solid, melting at 214° (dec) (lit. [4] dec above 200°) and giving a violet colour with Mg-HCl and with Zn-HCl (lit. [3] red colour). R. (PC) and UV agree with reported data [4, 15 respectively]. MS: m/e 304 (M⁺, 16%), 302(7), 286(5), 153(100), 137(11), 123(31): PMR(DMSO- d_6): δ 4.39 (1H, d, d), d) = 11 Hz, C-3), 4.98 (1H, d, d), d) = 11 Hz, C-2), 6.56 (1H, d, d), d)

9 Hz, C-6), 6.78 (2H, s, aromatic), 6.93 (1H, m, aromatic), 7.18 (1H, d, $J_{5,6} = 9$ Hz, C-5). The pentaacetate. colourless crystals (EtOH-H₂O), melted at 200-205° (dec). $\lambda_{\rm mso}^{\rm MSOH}$ 261, 314 nm; MS: m/e 514 (M $^+$, 2%), 472(13), 454(3), 430(18), 370(15), 328(11), 286(11), 278(26), 237(24), 236(47), 195(44), 194(48), 153(55), 152(100), 123(22); PMR(CDCl₃): δ 2.05 (3H, s, —OCOMe), 2.30 (9H. s. 3 × —OCOMe), 5.40 (1H. d, $J_{3,2} = 12.0$ Hz, C-3), 5.70 (1H. d, $J_{2,3} = 12$ Hz, C-2), 6.9 (1H, d, $J_{6,5} = 9.0$ Hz, C-6), 7.79 (1H, d, $J_{5,6} = 9.0$ Hz. C-5). Methylation of 3,7,8,3',4'-tetrahydroxyflavanone. Methylation

of the dihydroflavanol under N2, gave a mixture which on TLC revealed the presence of two minor components (not examined further) and 3 major components. One of these displayed TLC properties (R_f and colour) identical with 3,7,8,3',4'-pentamethoxyflavone (already referred to in this communication). The remaining two compounds were separated on PLC (Si gel, C₆H₆-EtOH, 95:5). The first (brown with spray reagent), mp 174°, R_f 0.38 (C₆H₁₂-EtOAc, 1.1) showed physical properties (UV, PMR, MS) in close agreement with published data for 3-hydroxy-7,8,3',4'-tetramethoxyflavanone [10, 11]. In addition, we observed 1H signals at δ (CDCl₃) 6.68 (1H, d, $J_{6,5}$ = 9.0 Hz, C-6) and 7.66 (1H, d, $J_{5.6} = 9.0$ Hz, C-5). The second component separated as colourless crystals, mp 149", R, 0.51 $(C_6H_{12}-EtOAc, 1:1)$; λ_{max}^{EtOH} 232(sh), 259(sh), 286 nm, MS: m/e 374 (M⁺, 18%), 195(13), 194(100), 179(18), 151(14). The PMR spectrum corresponded closely with that published for 3,7,8,3',4'pentamethoxyflavanone [10].

Acknowledgements—We thank Professor D. A. H. Taylor and Dr K. H. Pegel for their interest and advice, the C.S.I.R. for financial assistance, Dr D. Pienaar and Miss B. Adams for MS

REFERENCES

- 1. Palmer, E. and Pitman, N. (1972) in *Trees of Southern Africa* Vol. 2, p. 729. A. A. Balkema, Cape Town.
- 2. Codd, L. E. (1958) Bothalia, 7(1), 67.
- 3. Clark-Lewis, J W and Mortimer, P. I. (1960) J. Chem. Soc. 4106.
- Clark-Lewis, J. W. and Nair. V. (1964) Aust. J. Chem. 17, 1164.
- 5. Row, L. R. and Sastry, C. V. R. (1963) Tetrahedron 19, 1371.
- 6. Seshadri, T. R. (1959) Tetrahedron 6, 180
- Dean, F. M. (1963) in Naturally Occurring Oxygen Ring Compounds p. 335. Butterworths, London.
- 8. Roux, D. G. and Paulus, E. (1962) Biochem. J. 84, 416.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) in The Systematic Identification of Flavonoids p. 165 et seq. Springer, New York.
- Clark-Lewis, J. W., Jemison, R. W. and Nair, V (1968) Aust. J. Chem. 21, 3015.
- 11 Clark-Lewis, J. W. (1968) Aust. J. Chem. 21, 3028.
- Clark-Lewis, J. W. and Katekar, G. F. (1962) J. Chem Soc 4502
- 13 Kurth, E. (1939) J. Am. Chem. Soc. 61, 861.
- 14. King, F. E. and Bottomley, W. (1954) J. Chem. Soc. 1399.
- Clark-Lewis, J. W. and Porter, L. J. (1972) Aust J. Chem. 25, 1943.